miR-34a is essential for p19(Arf)-driven cell cycle arrest

miR-34a对于p19(Arf)驱动的细胞周期停滞至关重要

阅读:7
作者:Nida Iqbal, Jie Mei, Jing Liu, Stephen X Skapek

Abstract

The Arf tumor suppressor gene product, p19(Arf), regulates cell proliferation in incipient cancer cells and during embryo development. Beyond its commonly accepted p53-dependent actions, p19(Arf) also acts independently of p53 in both contexts. One such p53-independent effect with in vivo relevance includes its repression of Pdgfrβ, a process that is essential for vision in the mouse. We have utilized cell culture-based and mouse models to define a new role for miR-34a in this process. Ectopic expression of Arf in cultured cells enhanced the expression of several microRNAs predicted to target Pdgfrß synthesis, including the miR-34 family. Because miR-34a has been implicated as a p53-dependent effector, we investigated whether it also contributed to p53-independent effects of p19(Arf). Indeed, in mouse embryo fibroblasts (MEFs) lacking p53, Arf-driven repression of Pdgfrβ and its blockade of Pdgf-B stimulated DNA synthesis were both completely interrupted by anti-microRNA against miR-34a. Ectopic miR-34a directly targeted Pdgfrβ and a plasmid reporter containing wild-type Pdgfrβ 3'UTR sequence, but not one in which the miR-34a target sequence was mutated. Although miR-34a expression has been linked to p53-a well-known effector of p19(Arf)-Arf expression and its knockdown correlated with miR-34a level in MEFs lacking p53. Finally, analysis of the mouse embryonic eye demonstrated that Arf controlled expression of miR-34a, and the related miR-34b and c, in vivo during normal mouse development. Our findings indicate that miR-34a provides an essential link between p19(Arf) and its p53-independent capacity to block cell proliferation driven by Pdgfrβ. This has ramifications for developmental and tumor suppressor roles of Arf.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。