Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level

胆囊切除术通过增加脱氧胆酸水平激活 Wnt 信号通路促进结肠致癌作用

阅读:5
作者:Yuxia Yao, Xiangji Li, Baohong Xu, Li Luo, Qingdong Guo, Xingyu Wang, Lan Sun, Zheng Zhang, Peng Li

Conclusion

We concluded that XGB-induced DCA exposure could promote the progression of CC by inhibiting FXR expression and enhancing the Wnt-β-catenin pathway. Video Abstract.

Methods

Colitis-associated CC (CAC) mouse models constructed by AOM-DSS inducement were used to confirm the effect of XGB on the CC progression. Hematoxylin & eosin staining was performed to assess the tumor morphology of CAC mouse models tissues. Various cell biological assays including EdU, live-cell imaging, wound-healing assays, and flow cytometry for cell cycle and apoptosis were used to evaluate the effect of DCA on CC progression. The correlation among XGB, DCA, and CC and their underlying mechanisms were detected with immunohistochemistry, mass spectrometry, transcriptome sequencing, qRT-PCR, and western blotting.

Purpose

Cholecystectomy (XGB) is widely recognized as a risk factor for colon cancer (CC). Continuous exposure of the colonic epithelium to deoxycholic acid (DCA) post-XGB may exert cytotoxic effects and be involved in the progression of CC. However, the functions of the XGB-induced DCA increase and the underlying mechanism remain unclear.

Results

Here we proved that XGB increased the plasma DCA level and promoted colon carcinogenesis in a colitis-associated CC mouse model. Additionally, we revealed that DCA promoted the proliferation and migration of CC cells. Further RNA sequencing showed that 120 mRNAs were upregulated, and 118 downregulated in DCA-treated CC cells versus control cells. The upregulated mRNAs were positively correlated with Wnt signaling and cell cycle-associated pathways. Moreover, DCA treatment could reduced the expression of the farnesoid X receptor (FXR) and subsequently increased the levels of β-Catenin and c-Myc in vitro and in vivo. Moreover, the FXR agonist GW4064 decreased the proliferation of CC cells by repressing the expression of β-catenin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。