Acute HIIE elicits similar changes in human skeletal muscle mitochondrial H2O2 release, respiration, and cell signaling as endurance exercise even with less work

急性 HIIE 引发的人类骨骼肌线粒体 H2O2 释放、呼吸和细胞信号传导的变化与耐力运动类似,即使运动量较少

阅读:5
作者:Adam J Trewin, Lewan Parker, Christopher S Shaw, Danielle S Hiam, Andrew Garnham, Itamar Levinger, Glenn K McConell, Nigel K Stepto

Abstract

It remains unclear whether high-intensity interval exercise (HIIE) elicits distinct molecular responses to traditional endurance exercise relative to the total work performed. We aimed to investigate the influence of exercise intensity on acute perturbations to skeletal muscle mitochondrial function (respiration and reactive oxygen species) and metabolic and redox signaling responses. In a randomized, repeated measures crossover design, eight recreationally active individuals (24 ± 5 yr; V̇o2peak: 48 ± 11 ml·kg-1·min-1) undertook continuous moderate-intensity [CMIE: 30 min, 50% peak power output (PPO)], high-intensity interval (HIIE: 5 × 4 min, 75% PPO, work matched to CMIE), and low-volume sprint interval (SIE: 4 × 30 s) exercise, ≥7 days apart. Each session included muscle biopsies at baseline, immediately, and 3 h postexercise for high-resolution mitochondrial respirometry ( Jo2) and H2O2 emission ( Jh2o2) and gene and protein expression analysis. Immediately postexercise and irrespective of protocol, Jo2 increased during complex I + II leak/state 4 respiration but Jh2o2 decreased ( P < 0.05). AMP-activated protein kinase and acetyl co-A carboxylase phosphorylation increased ~1.5 and 2.5-fold respectively, while thioredoxin-reductase-1 protein abundance was ~35% lower after CMIE vs. SIE ( P < 0.05). At 3 h postexercise, regardless of protocol, Jo2 was lower during both ADP-stimulated state 3 OXPHOS and uncoupled respiration ( P < 0.05) but Jh2o2 trended higher ( P < 0.08) and PPARGC1A mRNA increased ~13-fold, and peroxiredoxin-1 protein decreased ~35%. In conclusion, intermittent exercise performed at high intensities has similar dynamic effects on muscle mitochondrial function compared with endurance exercise, irrespective of whether total workload is matched. This suggests exercise prescription can accommodate individual preferences while generating comparable molecular signals known to promote beneficial metabolic adaptations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。