Quantitative single-cell transcriptome-based ranking of engineered AAVs in human retinal explants

基于单细胞转录组的人类视网膜外植体中工程化 AAV 的定量排序

阅读:7
作者:Zhouhuan Xi, Bilge E Öztürk, Molly E Johnson, Serhan Turunç, William R Stauffer, Leah C Byrne

Abstract

Gene therapy is a rapidly developing field, and adeno-associated viruses (AAVs) are a leading viral-vector candidate for therapeutic gene delivery. Newly engineered AAVs with improved abilities are now entering the clinic. It has proven challenging, however, to predict the translational potential of gene therapies developed in animal models due to cross-species differences. Human retinal explants are the only available model of fully developed human retinal tissue and are thus important for the validation of candidate AAV vectors. In this study, we evaluated 18 wild-type and engineered AAV capsids in human retinal explants using a recently developed single-cell RNA sequencing (RNA-seq) AAV engineering pipeline (scAAVengr). Human retinal explants retained the same major cell types as fresh retina, with similar expression of cell-specific markers except for a photoreceptor population with altered expression of photoreceptor-specific genes. The efficiency and tropism of AAVs in human explants were quantified with single-cell resolution. The top-performing serotypes, K91, K912, and 7m8, were further validated in non-human primate and human retinal explants. Together, this study provides detailed information about the transcriptome profiles of retinal explants and quantifies the infectivity of leading AAV serotypes in human retina, accelerating the translation of retinal gene therapies to the clinic.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。