M2 polarization of tumor-associated macrophages is dependent on integrin β3 via peroxisome proliferator-activated receptor-γ up-regulation in breast cancer

乳腺癌中肿瘤相关巨噬细胞的 M2 极化依赖于整合素 β3,这是通过过氧化物酶体增殖激活受体-γ 上调实现的

阅读:5
作者:Yuxin Shu, Menghao Qin, Yue Song, Qing Tang, Yahong Huang, Pingping Shen, Yan Lu

Abstract

Macrophages are particularly abundant and play an important role throughout the tumor progression process, namely, tumor-associated macrophages (TAM) in the tumor microenvironment. TAM can be polarized to disparate functional phenotypes, the M1 and M2 macrophages. M1-like type macrophages are defined as pro-inflammatory cells involved in killing cancer cells, while M2-like type cells can specially promote tumor growth and metastasis, tissue remodeling and immunosuppression. In this study, we first found that integrin β3 was highly expressed on the surface of TAM, both in vivo and in vitro, that displayed the M2-like characteristics. Under intervention of CYC or triptolide, the integrin β3 inhibitors, the M2 polarization of TAM could be inhibited. Moreover, in the cell model of M2 polarization, either blockade or knockout/knockdown of integrin β3 could also suppress macrophage M2 polarization, which suggested that the M2 polarization was dependent on integrin β3. Using knockdown of peroxisome proliferator-activated receptor-γ (PPARγ), an M2 regulator, we found that expression and activation of PPARγ participated in M2 polarization that was mediated by integrin β3. Finally, to verify the activity of integrin β3 inhibitors on TAM in vivo, 4T1 tumor-bearing mice were treated with CYC or triptolide; in response, the M1/M2 ratio of TAM was up-regulated, while the infiltration of total lymphocytes into tumor tissue was not altered. In general, our study found a connection between integrin β3 and macrophage polarization, which provides a strategy for facilitating M2 to M1 repolarization and reconstructing the tumor immune microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。