Nickel Oxy-Hydroxy/Multi-Wall Carbon Nanotubes Film Coupled with a 3D-Printed Device as a Nonenzymatic Glucose Sensor

镍氧羟基/多壁碳纳米管薄膜与 3D 打印装置结合作为非酶葡萄糖传感器

阅读:5
作者:Murillo N T Silva, Raquel G Rocha, Eduardo M Richter, Rodrigo A A Munoz, Edson Nossol

Abstract

A rapid and simple method for the amperometric determination of glucose using a nanocomposite film of nickel oxyhydroxide and multi-walled carbon nanotube (MWCNTs) was evaluated. The NiHCF)/MWCNT electrode film was fabricated using the liquid-liquid interface method, and it was used as a precursor for the electrochemical synthesis of nickel oxy-hydroxy (Ni(OH)2/NiOOH/MWCNT). The interaction between nickel oxy-hydroxy and the MWCNTs provided a film that is stable over the electrode surface, with high surface area and excellent conductivity. The nanocomposite presented an excellent electrocatalytic activity for the oxidation of glucose in an alkaline medium. The sensitivity of the sensor was found to be 0.0561 μA μmol L-1, and a linear range from 0.1 to 150 μmol L-1 was obtained, with a good limit of detection (0.030 μmol L-1). The electrode exhibits a fast response (150 injections h-1) and a sensitive catalytic performance, which may be due to the high conductivity of MWCNT and the increased active surface area of the electrode. Additionally, a minimal difference in the slopes for ascending (0.0561 µA µmol L-1) and descending (0.0531 µA µmol L-1) was observed. Moreover, the sensor was applied to the detection of glucose in artificial plasma blood samples, achieving values of 89 to 98% of recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。