Paeoniflorin suppresses IL-33 production by macrophages

芍药苷抑制巨噬细胞产生 IL-33

阅读:5
作者:Weihua Li, Wenting Tao, Jiaojiao Chen, Yi Zhai, Nina Yin, Zhigang Wang

Conclusions

PF suppresses IL-33 production by macrophages via inhibiting NF-κB and P38MAPK activation associated with the regulation of Ca2+ mobilization.

Methods

In vivo, IL-33 production in mice after lipopolysaccharide (LPS) injection together with PF application was detected by enzyme-linked immunosorbent assay (ELISA). In vitro, MTT, Real-time PCR, ELISA, Calcium (Ca2+) imaging and Western blot were used to assess the cytotoxicity of PF, IL-33 expression at mRNA and protein levels, Ca2+ influx, protein kinase C (PKC) activity, nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) activation in LPS-stimulated RAW264.7 macrophages with PF administration.

Objective

Interleukin (IL)-33 has been attracting more and more attention as a new member of theIL-1 cytokine family in recent years. However, the underlying mechanisms referred to the regulation of endogenous IL-33 production are not fully illustrated. Paeoniflorin (PF) has been reported to possess multiple pharmacological activities, including anti-inflammation and anti-allergy. In this study, we aimed to investigate the effect of PF on IL-33 production by macrophages and explore the underlying mechanisms.

Results

Our results indicated that PF (5 and 25 mg/kg) significantly reduced the production of TNF-a, IL-1β, and IL-33 in the peritoneal exudate of LPS-treated mice. In vitro assay, upregulation of PF concentration (≥ 20 μM) showed an increased cytotoxicity in RAW264.7 cells during the 24-h cell culture. PF (10 μM) inhibited IL-33 production, Ca2+ influx, PKC activity, NF-κB (p65) activation, and P38MAPK phosphorylation in LPS-treated macrophages. Notably, NF-κB inhibitor (BAY 11-7085), P38MAPK inhibitor (SB203580), and Ca2+ blocker (NiCl2) also curbed LPS-induced IL-33 production, respectively.Conclusions: PF suppresses IL-33 production by macrophages via inhibiting NF-κB and P38MAPK activation associated with the regulation of Ca2+ mobilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。