Conclusions
We identified many secondary KRAS mutations causing resistance to sotorasib, adagrasib, or both, in vitro. The differential activities of these two inhibitors depending on the secondary mutations suggest sequential use in some cases. In addition, switching to BI-3406 plus trametinib might be a useful strategy to overcome acquired resistance owing to the secondary Y96D and Y96S mutations.
Methods
We chronically exposed Ba/F3 cells transduced with KRASG12C to sotorasib or adagrasib in the presence of N-ethyl-N-nitrosourea and searched for secondary KRAS mutations. Strategies to overcome resistance were also investigated.
Results
We generated 142 Ba/F3 clones resistant to either sotorasib or adagrasib, of which 124 (87%) harbored secondary KRAS mutations. There were 12 different secondary KRAS mutations. Y96D and Y96S were resistant to both inhibitors. A combination of novel SOS1 inhibitor, BI-3406, and trametinib had potent activity against this resistance. Although G13D, R68M, A59S and A59T, which were highly resistant to sotorasib, remained sensitive to adagrasib, Q99L was resistant to adagrasib but sensitive to sotorasib. Conclusions: We identified many secondary KRAS mutations causing resistance to sotorasib, adagrasib, or both, in vitro. The differential activities of these two inhibitors depending on the secondary mutations suggest sequential use in some cases. In addition, switching to BI-3406 plus trametinib might be a useful strategy to overcome acquired resistance owing to the secondary Y96D and Y96S mutations.
