Diet-induced obesity accelerates the onset of terminal phenotypes in α-synuclein transgenic mice

饮食诱导的肥胖加速了 α-突触核蛋白转基因小鼠终末表型的出现

阅读:5
作者:Carola Rotermund, Felicia M Truckenmüller, Heinrich Schell, Philipp J Kahle

Abstract

Parkinson's disease (PD) and diabetes belong to the most common neurodegenerative and metabolic syndromes, respectively. Epidemiological links between these two frequent disorders are controversial. The neuropathological hallmarks of PD are protein aggregates composed of amyloid-like fibrillar and serine-129 phosphorylated (pS129) α-synuclein (AS). To study if diet-induced obesity could be an environmental risk factor for PD-related α-synucleinopathy, transgenic (TG) mice, expressing the human mutant A30P AS in brain neurons, were subjected after weaning to a lifelong high fat diet (HFD). The TG mice became obese and glucose-intolerant, as did the wild-type controls. Upon aging, HFD significantly accelerated the onset of the lethal locomotor phenotype. Coinciding with the premature movement phenotype and death, HFD accelerated the age of onset of brainstem α-synucleinopathy as detected by immunostaining with antibodies against pathology-associated pS129. Amyloid-like neuropathology was confirmed by thioflavin S staining. Accelerated onset of neurodegeneration was indicated by Gallyas silver-positive neuronal dystrophy as well as astrogliosis. Phosphorylation of the activation sites of the pro-survival signaling intermediate Akt was reduced in younger TG mice after HFD. Thus, diet-induced obesity may be an environmental risk factor for the development of α-synucleinopathies. The molecular and cellular mechanisms remain to be further elucidated. Life-long high fat diet (HFD) induces obesity and glucose intolerance in a transgenic mouse model for α-synucleinopathy and thereby leads to decreased life span as well as accelerated age of onset of the terminal phenotype. This is accompanied by increased neuroinflammation and premature α-synuclein pathology in the brainstems of the HFD-fed mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。