LncRNA MALAT1 promotes decidualization of endometrial stromal cells via sponging miR-498-3p and targeting histone deacetylase 4

LncRNA MALAT1 通过海绵 miR-498-3p 和靶向组蛋白去乙酰化酶 4 促进子宫内膜基质细胞蜕膜化

阅读:6
作者:Lijuan Shi, Lihua Zhu, Qiao Gu, Chengcai Kong, Xinmei Liu, Zonghao Zhu

Abstract

Decidualization of human endometrial stromal cells (hESCs) is important for the maintenance of a successful pregnancy. Histone deacetylase 4 (HDAC4) was reported to be involved in the dysfunction of decidua-derived mesenchymal stem cells. However, the role of HDAC4 underlying decidualization of hESCs remains unclear. We intended to explore the function and molecular mechanism of HDAC4 in hESCs. In vitro expansion of hESCs using a serum-free medium was used to confirm the characteristics of hESCs. Gene expression in hESCs was evaluated by reverse transcription-quantitative polymerase chain reaction. CCK-8 assay, TUNEL staining, flow cytometry analysis, and Western blot analysis were performed to test the effects of HDAC4 and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on hESCs. RNA pull-down and luciferase reporter assays were performed to validate the relationship between genes. In this study, the characteristics of hESCs were sustained in serum-free medium during a process of propagation. HDAC4 knockdown suppressed hESCs viability and promoted hESCs apoptosis. HDAC4 was targeted by miR-498-3p in hESCs. MALAT1 bound with miR-498-3p in hESCs. HDAC4 expression was positively regulated by MALAT1 and negatively regulated by miR-498-3p in hESCs. HDAC4 upregulation countervailed the effects of MALAT1 silencing on hESCs proliferation, apoptosis, and decidualization of hESCs. Overall, MALAT1 facilitated the decidualization of hESCs via binding with miR-498-3p and upregulating HDAC4, which might provide a new direction for the maintenance of a successful pregnancy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。