Verteporfin attenuates trauma-induced heterotopic ossification of Achilles tendon by inhibiting osteogenesis and angiogenesis involving YAP/β-catenin signaling

维替泊芬通过抑制涉及 YAP/β-catenin 信号传导的成骨作用和血管生成来减轻创伤引起的跟腱异位骨化

阅读:5
作者:Gang Luo, Ziyang Sun, Hang Liu, Zhengqiang Yuan, Wei Wang, Bing Tu, Juehong Li, Cunyi Fan

Abstract

Heterotopic ossification occurs as a pathological ossification condition characterized by ectopic bone formation within soft tissues following trauma. Vascularization has long been established to fuel skeletal ossification during tissue development and regeneration. However, the feasibility of vascularization as a target of heterotopic ossification prevention remained to be further clarified. Here, we aimed to identify whether verteporfin as a widely used FDA-approved anti-vascularization drug could effectively inhibit trauma-induced heterotopic ossification formation. In the current study, we found that verteporfin not only dose dependently inhibited the angiogenic activity of human umbilical vein endothelial cells (HUVECs) but also the osteogenic differentiation of tendon stem cells (TDSCs). Moreover, YAP/β-catenin signaling axis was downregulated by the verteporfin. Application of lithium chloride, an agonist of β-catenin, recovered TDSCs osteogenesis and HUVECs angiogenesis that was inhibited by verteporfin. In vivo, verteporfin attenuated heterotopic ossification formation by decelerating osteogenesis and the vessels densely associated with osteoprogenitors formation, which could also be readily reversed by lithium chloride, as revealed by histological analysis and Micro-CT scan in a murine burn/tenotomy model. Collectively, this study confirmed the therapeutic effect of verteporfin on angiogenesis and osteogenesis in trauma-induced heterotopic ossification. Our study sheds light on the anti-vascularization strategy with verteporfin as a candidate treatment for heterotopic ossification prevention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。