Interplay between interferon regulatory factor 1 and BRD4 in the regulation of PD-L1 in pancreatic stellate cells

干扰素调节因子 1 与 BRD4 在调节胰腺星状细胞 PD-L1 中的相互作用

阅读:6
作者:Kazumi Ebine, Krishan Kumar, Thao N Pham, Mario A Shields, Katharine A Collier, Meng Shang, Brian T DeCant, Raul Urrutia, Rosa F Hwang, Sam Grimaldo, Daniel R Principe, Paul J Grippo, David J Bentrem, Hidayatullah G Munshi

Abstract

The fibrotic reaction is a characteristic feature of human pancreatic ductal adenocarcinoma (PDAC) tumors. It is associated with activation and proliferation of pancreatic stellate cells (PSCs), which are key regulators of fibrosis in vivo. While there is increasing interest in the regulation of PD-L1 expression in cancer and immune cells, the expression and regulation of PD-L1 in other stromal cells, such as PSCs, has not been fully evaluated. Here we show that PSCs in vitro express higher PD-L1 mRNA and protein levels compared to the levels present in PDAC cells. We show that inhibitors targeting bromodomain and extra-terminal (BET) proteins and BRD4 knockdown decrease interferon-γ (IFN-γ)-induced PD-L1 expression in PSCs. We also show that c-MYC, one of the well-established targets of BET inhibitors, does not mediate IFN-γ-regulated PD-L1 expression in PSCs. Instead we show that interferon regulatory factor 1 (IRF1) mediates IFN-γ-induced PD-L1 expression in PSCs. Finally, while we show that BET inhibitors do not regulate IFN-γ-induced IRF1 expression in PSCs, BET inhibitors decrease binding of IRF1 and BRD4 to the PD-L1 promoter. Together, these results demonstrate the interplay between IRF1 and BRD4 in the regulation of PD-L1 in PSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。