A human breast atlas integrating single-cell proteomics and transcriptomics

整合单细胞蛋白质组学和转录组学的人类乳腺图谱

阅读:2
作者:G Kenneth Gray ,Carman Man-Chung Li ,Jennifer M Rosenbluth ,Laura M Selfors ,Nomeda Girnius ,Jia-Ren Lin ,Ron C J Schackmann ,Walter L Goh ,Kaitlin Moore ,Hana K Shapiro ,Shaolin Mei ,Kurt D'Andrea ,Katherine L Nathanson ,Peter K Sorger ,Sandro Santagata ,Aviv Regev ,Judy E Garber ,Deborah A Dillon ,Joan S Brugge

Abstract

The breast is a dynamic organ whose response to physiological and pathophysiological conditions alters its disease susceptibility, yet the specific effects of these clinical variables on cell state remain poorly annotated. We present a unified, high-resolution breast atlas by integrating single-cell RNA-seq, mass cytometry, and cyclic immunofluorescence, encompassing a myriad of states. We define cell subtypes within the alveolar, hormone-sensing, and basal epithelial lineages, delineating associations of several subtypes with cancer risk factors, including age, parity, and BRCA2 germline mutation. Of particular interest is a subset of alveolar cells termed basal-luminal (BL) cells, which exhibit poor transcriptional lineage fidelity, accumulate with age, and carry a gene signature associated with basal-like breast cancer. We further utilize a medium-depletion approach to identify molecular factors regulating cell-subtype proportion in organoids. Together, these data are a rich resource to elucidate diverse mammary cell states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。