Identification of a novel lipoic acid biosynthesis pathway reveals the complex evolution of lipoate assembly in prokaryotes

新型硫辛酸生物合成途径的鉴定揭示了原核生物中硫辛酸组装的复杂进化

阅读:5
作者:Tomohisa Sebastian Tanabe, Martina Grosser, Lea Hahn, Carolin Kümpel, Hanna Hartenfels, Evelyn Vtulkin, Wanda Flegler, Christiane Dahl

Abstract

Lipoic acid is an essential biomolecule found in all domains of life and is involved in central carbon metabolism and dissimilatory sulfur oxidation. The machineries for lipoate assembly in mitochondria and chloroplasts of higher eukaryotes, as well as in the apicoplasts of some protozoa, are all of prokaryotic origin. Here, we provide experimental evidence for a novel lipoate assembly pathway in bacteria based on a sLpl(AB) lipoate:protein ligase, which attaches octanoate or lipoate to apo-proteins, and 2 radical SAM proteins, LipS1 and LipS2, which work together as lipoyl synthase and insert 2 sulfur atoms. Extensive homology searches combined with genomic context analyses allowed us to precisely distinguish between the new and established pathways and map them on the tree of life. This not only revealed a much wider distribution of lipoate biogenesis systems than expected, in particular, the novel sLpl(AB)-LipS1/S2 pathway, and indicated a highly modular nature of the enzymes involved, with unforeseen combinations, but also provided a new framework for the evolution of lipoate assembly. Our results show that dedicated machineries for both de novo lipoate biogenesis and scavenging from the environment were implemented early in evolution and that their distribution in the 2 prokaryotic domains was shaped by a complex network of horizontal gene transfers, acquisition of additional genes, fusions, and losses. Our large-scale phylogenetic analyses identify the bipartite archaeal LplAB ligase as the ancestor of the bacterial sLpl(AB) proteins, which were obtained by horizontal gene transfer. LipS1/S2 have a more complex evolutionary history with multiple of such events but probably also originated in the domain archaea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。