Subcellular Parkinson's Disease-Specific Alpha-Synuclein Species Show Altered Behavior in Neurodegeneration

亚细胞帕金森病特异性 α-突触核蛋白物种在神经退行性疾病中表现出行为改变

阅读:5
作者:Rashed Abdullah, Ketan S Patil, Benjamin Rosen, Ramavati Pal, Shubhangi Prabhudesai, Sungsu Lee, Indranil Basak, Esthelle Hoedt, Peter Yang, Keith Panick, Hsin-Pin Ho, Emmanuel Chang, Charalampos Tzoulis, Jan Petter Larsen, Thomas A Neubert, Guido Alves, Simon G Møller

Abstract

Parkinson's disease and other synucleinopathies are characterized by the presence of intra-neuronal protein aggregates enriched in the presynaptic protein α-synuclein. α-synuclein is considered an intrinsically disordered 14 kDa monomer, and although poorly understood, its transition to higher-order multimeric species may play central roles in healthy neurons and during Parkinson's disease pathogenesis. In this study, we demonstrate that α-synuclein exists as defined, subcellular-specific species that change characteristics in response to oxidative stress in neuroblastoma cells and in response to Parkinson's disease pathogenesis in human cerebellum and frontal cortex. We further show that the phosphorylation patterns of different α-synuclein species are subcellular specific and dependent on the oxidative environment. Using high-performance liquid chromatography and mass spectrometry, we identify a Parkinson's disease enriched, cytosolic ~36-kDa α-synuclein species which can be recapitulated in Parkinson's disease model neuroblastoma cells. The characterization of subcellular-specific α-synuclein features in neurodegeneration will allow for the identification of neurotoxic α-synuclein species, which represent prime targets to reduce α-synuclein pathogenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。