Card9 protects sepsis by regulating Ripk2-mediated activation of NLRP3 inflammasome in macrophages

Card9 通过调节巨噬细胞中 Ripk2 介导的 NLRP3 炎症小体的激活来预防脓毒症

阅读:6
作者:Zhen Xu, Daoqian Li, Wei Qu, Yuxin Yin, Shuping Qiao, Yanan Zhu, Sunan Shen, Yayi Hou, Jie Yang, Tingting Wang

Abstract

Sepsis is characterized by systemic inflammation, it's caused by primary infection of pathogenic microorganisms or secondary infection of damaged tissue. In this study, we focus on sepsis-induced intestine barrier functional disturbalice, presenting as increased permeability of intestinal epithelium. We observed that the phenotype of LPS-induced sepsis was exacerbated in Card9-/- mice, especially displaying more serious intestinal inflammation and gut barrier dysfunction. Next, we found the hyperactivation of NLRP3 inflammasome in the intestinal macrophages of Card9-/--sepsis mice. Moreover, Card9 over-expression decreased NLRP3 inflammasome activation in macrophages. Furthermore, we found that Card9 inhibited NLRP3 inflammasome activation by recruiting Ripk2. The competitive binding between Ripk2 with Caspase-1, instead of ASC with Caspase-1, inhibited the NLRP3 inflammasome activation. Over-expression of Ripk2 alleviated septic intestinal injury caused by Card9 deficiency. Taken together, we suggested Card9 acts as a negative regulation factor of NLRP3 inflammasome activation, which protects against intestinal damage during sepsis. Therefore, maintaining Card9-Ripk2 signaling homeostasis may provide a novel therapy of septic intestinal damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。