Theaflavin-3,3'-digallate represses osteoclastogenesis and prevents wear debris-induced osteolysis via suppression of ERK pathway

茶黄素-3,3'-二没食子酸酯通过抑制 ERK 通路抑制破骨细胞生成并防止磨损碎片引起的骨溶解

阅读:6
作者:Xuanyang Hu, Zichuan Ping, Minfeng Gan, Yunxia Tao, Liangliang Wang, Jiawei Shi, Xiexing Wu, Wen Zhang, Huilin Yang, Yaozeng Xu, Zhirong Wang, Dechun Geng

Significance

Total joint arthroplasty is widely accepted for the treatment of end-stage joint diseases. However, it is reported that aseptic loosening, initiated by peri-implant osteolysis, is the major reason for prosthesis failure. Although the pathophysiology of PIO remains unclear, increasing evidence indicates that osteoclasts are excessively activated at the implant site by wear debris from materials. Here, we demonstrated that theaflavin-3,3'-digallate, a natural active compound derived from black tea, inhibited osteoclast formation and osteoclastic bone resorption mainly via suppressing the ERK pathway. Moreover, the findings of this study have confirmed for the first time that theaflavin-3,3'-digallate has a protective effect on particle-induced osteolysis in a mouse calvarial model, thus preventing bone loss. These results indicate that theaflavin-3,3'-digallate may be a suitable therapeutic agent to treat wear debris-induced peri-implant osteolysis.

Statement of significance

Total joint arthroplasty is widely accepted for the treatment of end-stage joint diseases. However, it is reported that aseptic loosening, initiated by peri-implant osteolysis, is the major reason for prosthesis failure. Although the pathophysiology of PIO remains unclear, increasing evidence indicates that osteoclasts are excessively activated at the implant site by wear debris from materials. Here, we demonstrated that theaflavin-3,3'-digallate, a natural active compound derived from black tea, inhibited osteoclast formation and osteoclastic bone resorption mainly via suppressing the ERK pathway. Moreover, the findings of this study have confirmed for the first time that theaflavin-3,3'-digallate has a protective effect on particle-induced osteolysis in a mouse calvarial model, thus preventing bone loss. These results indicate that theaflavin-3,3'-digallate may be a suitable therapeutic agent to treat wear debris-induced peri-implant osteolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。