Aspergillus nomiae and fumigatus Ameliorating the Hypoxic Stress Induced by Waterlogging through Ethylene Metabolism in Zea mays L

烟曲霉和黄曲霉通过乙烯代谢缓解玉米涝渍引起的缺氧胁迫

阅读:6
作者:Khalil Ur Rahman, Kashmala Ali, Mamoona Rauf, Muhammad Arif

Abstract

Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants' fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present research was rationalized to explore the potential of the newly isolated 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophytic consortium of Aspergillus nomiae (MA1) and Aspergillus fumigatus (MA4) on maize growth promotion under WS. MA1 and MA4 were isolated from the seeds of Moringa oleifera L., which ably produced a sufficient amount of IAA, proline, phenols, and flavonoids. MA1 and MA4 proficiently colonized the root zone of maize (Zea mays L.). The symbiotic association of MA1 and MA4 promoted the growth response of maize compared with the non-inoculated plants under WS stress. Moreover, MA1- and MA4-inoculated maize plants enhanced the production of total soluble protein, sugar, lipids, phenolics, and flavonoids, with a reduction in proline content and H2O2 production. MA1- and MA4-inoculated maize plants showed an increase in the DPPH activity and antioxidant enzyme activities of CAT and POD, along with an increased level of hormonal content (GA3 and IAA) and decreased ABA and ACC contents. Optimal stomatal activity in leaf tissue and adventitious root formation at the root/stem junction was increased in MA1- and MA4-inoculated maize plants, with reduced lysigenous aerenchyma formation, ratio of cortex-to-stele, water-filled cells, and cell gaps within roots; increased tight and round cells; and intact cortical cells without damage. MA1 and MA4 induced a reduction in deformed mesophyll cells, and deteriorated epidermal and vascular bundle cells, as well as swollen metaxylem, phloem, pith, and cortical area, in maize plants under WS compared with control. Moreover, the transcript abundance of ethylene-responsive gene ZmEREB180, responsible for the induction of the WS tolerance in maize, showed optimally reduced expression sufficient for induction in WS tolerance, in MA1- and MA4-inoculated maize plants under WS compared with the non-inoculated control. The existing research supported the use of MA1 and MA4 isolates for establishing the bipartite mutualistic symbiosis in maize to assuage the adverse effects of WS by optimizing ethylene production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。