Age- and sex-related differences of periodontal bone resorption, cognitive function, and immune state in APP/PS1 murine model of Alzheimer's disease

APP/PS1 小鼠阿尔茨海默病模型中牙周骨吸收、认知功能和免疫状态的年龄和性别差异

阅读:6
作者:Huiwen Chen #, Yue Liao #, Xu Zhang, Hui Shen, Dihua Shang, Zhiyan He, Wei Zhou, Zhongchen Song

Background

The existence of an interconnected mechanism between cognitive disorders and periodontitis has been confirmed by mounting evidence. However, the role of age or sex differences in this mechanism has been less studied. This study aims to investigate sex and age differences in the characterization of periodontal bone tissue, immune state and cognitive function in amyloid precursor protein/presenilin 1(APP/PS1) murine model of Alzheimer's disease (AD).

Conclusions

Our data emphasize that age and sex are important variables to consider in evaluating periodontal bone tissue of APP/PS1 mice, and the cognitive impairment is more related to age. In addition, immune dysregulation (Th1, Th2, and Th17 cells) was found in the brain tissue and PBMCs of APP/PS1 mice, but this alteration of immune state was not statistically correlated with sex or age.

Methods

Three- and twelve-month-old male and female APP/PS1 transgenic mice and wild-type (WT) littermates were used in this study. The Morris water maze (MWM) was used to assess cognitive function. The bone microarchitecture of the posterior maxillary alveolar bone was evaluated by microcomputed tomography (micro-CT). Pathological changes in periodontal bone tissue were observed by histological chemistry. The proportions of helper T cells1 (Th1), Th2, Th17 and regulatory T cells (Tregs) in the peripheral blood mononuclear cells (PBMCs) and brain samples were assessed by flow cytometry.

Results

The learning ability and spatial memory of 12-month-old APP/PS1 mice was severely damaged. The changes in cognitive function were only correlated with age and genotype, regardless of sex. The 12-month-old APP/PS1 female mice exhibited markedly periodontal bone degeneration, evidenced by the decreased bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and bone mineral density (BMD), and the increased trabecular separation (Tb.Sp). The altered periodontal bone microarchitecture was associated with genotype, age and females. The flow cytometry data showed the increased Th1 and Th17 cells and the decreased Th2 cells in the brain and PBMC samples of 12-month-old APP/PS1 mice, compared to age- and sex-matched WT mice. However, there was no statistical correlation between age or sex and this immune state. Conclusions: Our data emphasize that age and sex are important variables to consider in evaluating periodontal bone tissue of APP/PS1 mice, and the cognitive impairment is more related to age. In addition, immune dysregulation (Th1, Th2, and Th17 cells) was found in the brain tissue and PBMCs of APP/PS1 mice, but this alteration of immune state was not statistically correlated with sex or age.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。