The actin cytoskeleton differentially regulates NG115-401L cell ryanodine receptor and inositol 1,4,5-trisphosphate receptor induced calcium signaling pathways

肌动蛋白细胞骨架差异调节NG115-401L细胞瑞诺丁受体和肌醇1,4,5-三磷酸受体诱导的钙信号通路

阅读:4
作者:Diptiman D Bose, David W Thomas

Abstract

Regulation of bi-directional communication between intracellular Ca(2+) pools and surface Ca(2+) channels remains incompletely characterized. We report Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptor (IP(3)R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca(2+) release, Ca(2+) influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP(3)R induced Ca(2+) release, whereas RyR-mediated Ca(2+) release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP(3)R and RyR linked Ca(2+) influx even though Ca(2+) pool sensitivities were different. These findings suggest discrete Ca(2+) store/Ca(2+) channel coupling mechanisms in the IP(3)R and RyR pathways as revealed by the differential sensitivity to actin perturbation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。