Nanofibers Regulate Single Bone Marrow Stem Cell Osteogenesis via FAK/RhoA/YAP1 Pathway

纳米纤维通过 FAK/RhoA/YAP1 通路调控单个骨髓干细胞成骨

阅读:5
作者:Bei Chang, Chi Ma, Xiaohua Liu

Abstract

Understanding cell-material interactions is a prerequisite for the development of bio-inspired materials for tissue regeneration. While nanofibrous biomaterials have been widely used in tissue regeneration, the effects of nanofibrous architecture on stem cell behaviors are largely ambiguous because the previous biomaterial systems used for nanofiber-cell interactions could not exclude the interference of cell-cell interactions. In this study, we developed a unique micropatterning technology to confine one single stem cell in a microisland of the nanofibrous micropatterned matrix; therefore, eliminating any potential intercellular communications. The nanofibrous micropatterned matrix, which mimicked both the physical architecture and chemical composition of natural extracellular matrix, was fabricated by a combination of electrospinning, chemical crosslinking, and UV-initiated photolithography. Compared to the non-nanofibrous architecture, a bone marrow mesenchymal stem cell (BMSC) cultured on the nanofibrous microisland exhibited a more in vivo-like morphology, a smaller spreading area, less focal adhesion, and fewer stress fibers. The BMSC cultured on the nanofibrous microisland also had higher alkaline phosphatase activity, indicating nanofibrous architecture promoted BMSC differentiation. A mechanistic study reveals that nanofibers regulate single BMSC osteogenesis via the FAK/RhoA/YAP1 pathway. The nanofibrous micropatterned matrix developed in this study is an excellent platform to promote the fundamental understanding of cell-matrix interactions, ultimately provide valuable insights for the development of novel bio-inspired scaffolds for tissue regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。