Single-cell RNA sequencing unravels heterogeneity of skeletal progenitors and cell-cell interactions underlying the bone repair process

单细胞 RNA 测序揭示骨骼祖细胞的异质性和骨修复过程中的细胞间相互作用

阅读:2
作者:Mika Nakayama, Hiroyuki Okada, Masahide Seki, Yutaka Suzuki, Ung-Il Chung, Shinsuke Ohba, Hironori Hojo

Conclusion

Multipotential skeletal progenitors and the direction of the cell differentiation were characterized at single cell resolution in a mouse bone repair model. The Ccl9 signaling pathway may be a key factor directing osteogenesis from the progenitors in the model and may be a therapeutic target for bone regeneration.

Methods

To better understand the behavior of the skeletal progenitors and the heterogeneity of the cells during bone repair at the microenvironmental level, we performed a combinatorial analysis consisting of lineage tracing for skeletal progenitors using the Sox9-CreERT2;R26R tdTomato mouse line followed by single-cell RNA sequencing (scRNA-seq) analysis using a mouse model of calvarial bone repair. To identify a therapeutic target for bone regeneration, further computational analysis was performed focusing on the identification of the cell-cell interactions, followed by pharmacological assessments with a critical-size calvarial bone defect mouse model.

Results

Lineage tracing analysis showed that skeletal progenitors marked by Sox9 were activated upon bone injury and contributed to bone repair by differentiating into osteoblasts. The scRNA-seq analysis characterized heterogeneous cell populations at the bone defect sites; the computational analysis predicted a bifurcated lineage from skeletal progenitors toward osteogenic and adipogenic lineages. Chemokine C-C motif ligand 9 (Ccl9) was identified as a signaling molecule that regulates bone regeneration in the mouse model, possibly through the regulation of adipogenic differentiation at the bone defect site.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。