Conclusion
Multipotential skeletal progenitors and the direction of the cell differentiation were characterized at single cell resolution in a mouse bone repair model. The Ccl9 signaling pathway may be a key factor directing osteogenesis from the progenitors in the model and may be a therapeutic target for bone regeneration.
Methods
To better understand the behavior of the skeletal progenitors and the heterogeneity of the cells during bone repair at the microenvironmental level, we performed a combinatorial analysis consisting of lineage tracing for skeletal progenitors using the Sox9-CreERT2;R26R tdTomato mouse line followed by single-cell RNA sequencing (scRNA-seq) analysis using a mouse model of calvarial bone repair. To identify a therapeutic target for bone regeneration, further computational analysis was performed focusing on the identification of the cell-cell interactions, followed by pharmacological assessments with a critical-size calvarial bone defect mouse model.
Results
Lineage tracing analysis showed that skeletal progenitors marked by Sox9 were activated upon bone injury and contributed to bone repair by differentiating into osteoblasts. The scRNA-seq analysis characterized heterogeneous cell populations at the bone defect sites; the computational analysis predicted a bifurcated lineage from skeletal progenitors toward osteogenic and adipogenic lineages. Chemokine C-C motif ligand 9 (Ccl9) was identified as a signaling molecule that regulates bone regeneration in the mouse model, possibly through the regulation of adipogenic differentiation at the bone defect site.
