A Sacrificial PLA Block Mediated Route to Injectable and Degradable PNIPAAm-Based Hydrogels

牺牲 PLA 嵌段介导的可注射和可降解 PNIPAAm 基水凝胶的制备方法

阅读:5
作者:Vernon Tebong Mbah, Vincent Pertici, Céline Lacroix, Bernard Verrier, Pierluigi Stipa, Didier Gigmes, Thomas Trimaille

Abstract

Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm)-based injectable hydrogels represent highly attractive materials in tissue engineering and drug/vaccine delivery but face the problem of long-term bioaccumulation due to non-degradability. In this context, we developed an amphiphilic poly(D,L-lactide)-b-poly(NIPAAm-co-polyethylene glycol methacrylate) (PLA-b-P(NIPAAm-co-PEGMA)) copolymer architecture, through a combination of ring-opening and nitroxide-mediated polymerizations, undergoing gelation in aqueous solution near 30 °C. Complete hydrogel mass loss was observed under physiological conditions after few days upon PLA hydrolysis. This was due to the inability of the resulting P(NIPAAm-co-PEGMA) segment, that contains sufficiently high PEG content, to gel. The copolymer was shown to be non-toxic on dendritic cells. These results thus provide a new way to engineer safe PNIPAAm-based injectable hydrogels with PNIPAAm-reduced content and a degradable feature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。