Fabrication of Poly(vinyl alcohol)-Polyaniline Nanofiber/Graphene Hydrogel for High-Performance Coin Cell Supercapacitor

聚乙烯醇-聚苯胺纳米纤维/石墨烯水凝胶的制备及其用于高性能纽扣电池超级电容器

阅读:5
作者:Hyeonseo Joo, Hoseong Han, Sunghun Cho

Abstract

Electroactive polymer hydrogel offers several advantages for electrical devices, including straightforward synthesis, high conductivity, excellent redox behavior, structural robustness, and outstanding mechanical properties. Here, we report an efficient strategy for generating polyvinyl alcohol-polyaniline-multilayer graphene hydrogels (PVA-PANI-MLG HDGs) with excellent scalability and significantly improved mechanical, electrical, and electrochemical properties; the hydrogels were then utilized in coin cell supercapacitors. Production can proceed through the simple formation of boronate (-O-B-O-) bonds between PANI and PVA chains; strong intermolecular interactions between MLG, PANI, and PVA chains contribute to stronger and more rigid HDGs. We identified the optimal amount of PVA (5 wt.%) that produces a nanofiber-like PVA-PANI HDG with better charge transport properties than PANI HDGs produced by earlier approaches. The PVA-PANI-MLG HDG demonstrated superior tensile strength (8.10 MPa) and higher specific capacitance (498.9 F/cm2, 166.3 F/cm3, and 304.0 F/g) than PVA-PANI HDGs without MLG. The remarkable reliability of the PVA-PANI-MLG HDG was demonstrated by 92.6% retention after 3000 cycles of galvanostatic charge-discharge. The advantages of this HDG mean that a coin cell supercapacitor assembled using it is a promising energy storage device for mobile and miniaturized electronics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。