Rictor deficiency in dendritic cells exacerbates acute kidney injury

树突状细胞 Rictor 缺乏加剧急性肾损伤

阅读:6
作者:Helong Dai, Alicia R Watson, Daniel Fantus, Longkai Peng, Angus W Thomson, Natasha M Rogers

Abstract

Dendritic cells (DCs) are critical initiators of innate immunity in the kidney and orchestrate inflammation following ischemia-reperfusion injury. The role of the mammalian/mechanistic target of rapamycin (mTOR) in the pathophysiology of renal ischemia-reperfusion injury has been characterized. However, the influence of DC-based alterations in mTOR signaling is unknown. To address this, bone marrow-derived mTORC2-deficient (Rictor-/-) DCs underwent hypoxia-reoxygenation and then analysis by flow cytometry. Adoptive transfer of wild-type or Rictor-/- DC to C57BL/6 mice followed by unilateral or bilateral renal ischemia-reperfusion injury (20 min ischemia) was used to assess their in vivo migratory capacity and influence on tissue injury. Age-matched male DC-specific Rictor-/- mice or littermate controls underwent bilateral renal ischemia-reperfusion, followed by assessment of renal function, histopathology, and biomolecular and cell infiltration analysis. Rictor-/- DCs expressed more costimulatory CD80/CD86 but less coinhibitory programmed death ligand 1 (PDL1), a pattern that was enhanced by hypoxia-reoxygenation. They also demonstrated enhanced migration to the injured kidney and induced greater tissue damage. Following ischemia-reperfusion, Rictor-/- DC mice developed higher serum creatinine levels, more severe histological damage, and greater proinflammatory cytokine production compared to littermate controls. Additionally, a greater influx of both neutrophils and T cells was seen in Rictor-/- DC mice, along with CD11c+MHCII+CD11bhiF4/80+ renal DC, that expressed more CD86 but less PDL1. Thus, DC-targeted elimination of Rictor enhances inflammation and migratory responses to the injured kidney, highlighting the regulatory roles of both DCs and Rictor in the pathophysiology of acute kidney injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。