Sitagliptin Alleviates Radiation-Induced Intestinal Injury by Activating NRF2-Antioxidant Axis, Mitigating NLRP3 Inf--lammasome Activation, and Reversing Gut Microbiota Disorder

西他列汀通过激活 NRF2-抗氧化轴、减轻 NLRP3 炎症小体活化和逆转肠道菌群紊乱来减轻放射性肠道损伤

阅读:6
作者:Shanshan Huang, Yongbiao Huang, Wanling Lin, Lei Wang, Yang Yang, Piao Li, Lei Xiao, Yuan Chen, Qian Chu, Xianglin Yuan

Abstract

Radiation-induced intestinal injury is a common and critical complication of radiotherapy for pelvic or abdominal tumors, with limited therapeutic strategies and effectiveness. Sitagliptin, a dipeptidyl peptidase IV (DPP4) inhibitor, has previously been reported to alleviate total body irradiation- (TBI-) induced damage of hematopoietic system in mice, but its effect on radiation-induced intestinal injury remains unclear. In this study, we confirmed that Sitagliptin could not only protect mice from death and weight loss caused by whole abdominal irradiation (WAI) but also improve the morphological structure of intestine and the regeneration ability of enterocytes. In addition, Sitagliptin significantly inhibited the production of radiation-induced proinflammatory cytokines and reduced the number of apoptotic intestinal epithelial cells and γ-H2AX expression. In vitro, we demonstrated that Sitagliptin protected HIEC-6 cells from ionizing radiation, resulting in increased cell viability and reduced DNA damage. Mechanistically, the radiation protection of Sitagliptin might be related to the upregulation of NRF2 level and the decrease of NLRP3 inflammasome activity. Importantly, Sitagliptin significantly restored radiation-induced changes in bacterial composition. In conclusion, our results suggested that Sitagliptin could reduce WAI-induced intestinal injury in mice, which may provide novel therapeutic strategy for radiation-induced intestinal injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。