Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death

人类甲型流感病毒引起心肌和心脏特异性传导系统感染,与早期炎症和过早死亡有关

阅读:4
作者:David Filgueiras-Rama, Jasmina Vasilijevic, Jose Jalife, Sami F Noujaim, Jose M Alfonso, Jose A Nicolas-Avila, Celia Gutierrez, Noelia Zamarreño, Andres Hidalgo, Alejandro Bernabé, Christopher Pablo Cop, Daniela Ponce-Balbuena, Guadalupe Guerrero-Serna, Daniel Calle, Manuel Desco, Jesus Ruiz-Cabello

Aims

Human influenza A virus (hIAV) infection is associated with important cardiovascular complications, although cardiac infection pathophysiology is poorly understood. We aimed to study the ability of hIAV of different pathogenicity to infect the mouse heart, and establish the relationship between the infective capacity and the associated in vivo, cellular and molecular alterations.

Conclusion

Human IAV can infect the heart and cardiac-specific conduction system, which may contribute to cardiac complications and premature death.

Results

We evaluated lung and heart viral titres in mice infected with either one of several hIAV strains inoculated intranasally. 3D reconstructions of infected cardiac tissue were used to identify viral proteins inside mouse cardiomyocytes, Purkinje cells, and cardiac vessels. Viral replication was measured in mouse cultured cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to confirm infection and study underlying molecular alterations associated with the in vivo electrophysiological phenotype. Pathogenic and attenuated hIAV strains infected and replicated in cardiomyocytes, Purkinje cells, and hiPSC-CMs. The infection was also present in cardiac endothelial cells. Remarkably, lung viral titres did not statistically correlate with viral titres in the mouse heart. The highly pathogenic human recombinant virus PAmut showed faster replication, higher level of inflammatory cytokines in cardiac tissue and higher viral titres in cardiac HL-1 mouse cells and hiPSC-CMs compared with PB2mut-attenuated virus. Correspondingly, cardiac conduction alterations were especially pronounced in PAmut-infected mice, associated with high mortality rates, compared with PB2mut-infected animals. Consistently, connexin43 and NaV1.5 expression decreased acutely in hiPSC-CMs infected with PAmut virus. YEM1L protease also decreased more rapidly and to lower levels in PAmut-infected hiPSC-CMs compared with PB2mut-infected cells, consistent with mitochondrial dysfunction. Human IAV infection did not increase myocardial fibrosis at 4-day post-infection, although PAmut-infected mice showed an early increase in mRNAs expression of lysyl oxidase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。