GPR30 Attenuates Myocardial Fibrosis in Diabetic Ovariectomized Female Rats: Role of iNOS Signaling

GPR30 减轻糖尿病卵巢切除雌性大鼠的心肌纤维化:iNOS 信号传导的作用

阅读:5
作者:Xiaowu Wang, Yanzhen Tan, Bo Xu, Linhe Lu, Minggao Zhao, Jipeng Ma, Hongliang Liang, Jincheng Liu, Shiqiang Yu

Abstract

Premenopausal women have a reduced risk for cardiovascular disease. Estrogen deficiency augments cardiac inflammation and oxidative stress and, thereby, aggravates myocardial fibrosis (MF) and diastolic dysfunction in hypertensive female rats. However, estrogen replacement therapy has no effect on myocardial infarction and cardiac fibrosis in postmenopausal women. Further clinical studies showed that high blood glucose levels in patients with diabetes is an important cause of MF, but the underlying mechanism is unclear. To experimentally address this issue, diabetes mellitus (DM) was induced by injecting streptozotocin and administering a high-fat diet in ovariectomized (OVX) rats. High degrees of fibrosis and apoptosis were detected in the cardiac tissue of these rats, together with increased expression of iNOS. Further treatment with the G protein-coupled estrogen receptor 30 (GPR30) agonist G1 decreased iNOS expression and the apoptosis rate in cardiac tissue significantly and inhibited cardiac fibroblast (CF) proliferation. Similar trends were observed in cultured CFs treated with high concentrations of fat and glucose. In addition, treatment with the iNOS-specific inhibitor W1400 attenuated iNOS and vimentin expression, which is associated with a marked reduction in MF. These results suggest that GPR30 activation inhibits MF in diabetic OVX female rats by suppressing cardiac iNOS activity and consequently NO levels. Thus, GPR30 activation may provide novel cardioprotection strategies for postmenopausal women, especially those with DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。