The underlying mechanisms of lorlatinib penetration across the blood-brain barrier and the distribution characteristics of lorlatinib in the brain

劳拉替尼跨血脑屏障的机制及脑内分布特征

阅读:6
作者:Wei Chen, Dujia Jin, Yafei Shi, Yujun Zhang, Haiyan Zhou, Guohui Li

Conclusion

Lorlatinib can increase the permeability of the blood-brain barrier whereby we suggest its underlying working mechanism is related to downregulating SPP1, inhibiting VEGF, TGF-β, and Claudin subsequently reducing the number of tight junctions between BBB cells. Lorlatinib plays a protective role on injured nerve cells and does not change the amount of P-gp expression in brain tissue, which may be important for its ability to be efficacious across the BBB with a low incidence of resistance.

Methods

Cytological experiments were performed to investigate the growth inhibitory effect of lorlatinib on different cells (endothelial cells HUVEC, HMEC-1, and HCMEC/D3) and to investigate the protective effect of lorlatinib on neuronal cells after SH-SY5Y hypoxia/reoxygenation injury. Furthermore, rat brain tissue was sequenced, and the differentially expressed genes (secreted phosphoprotein 1 (SPP1), vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-β), Claudin, ZO-1 and P-gp) in several different drug treatment groups were verified by Real-Time PCR. Lorlatinib brain distribution was predicted by physiologically based pharmacokinetics (PBPK).

Objective

To clarify the distribution of lorlatinib in the brain and elucidate the molecular mechanisms of lorlatinib penetration across the blood-brain barrier (BBB).

Results

Lorlatinib and crizotinib both had inhibitory effects on endothelial cells, however lorlatinib inhibited the growth of HCMEC/D3 more efficaciously than crizotinib. In the SH-SY5Y hypoxia model, lorlatinib had a greater protective effect on nerve cell damage caused by hypoxia and reoxygenation than crizotinib. The expression of SPP1, VEGF, TGF-β, and Claudin in brain tissue was significantly downregulated after lorlatinib administration, and the expression level of early growth transcription factor 1 (Egr-1) was significantly increased. The PBPK model successfully described lorlatinib concentrations in blood and brain tissue in the mouse model and gave a brain tissue partition coefficient of 0.7.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。