Human Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell Function

人类调节性 T 细胞介导树突状细胞功能的转录调节

阅读:5
作者:Emily Mavin, Lindsay Nicholson, Syed Rafez Ahmed, Fei Gao, Anne Dickinson, Xiao-Nong Wang

Abstract

Regulatory T cells (Treg) attenuate dendritic cell (DC) maturation and stimulatory function. Current knowledge on the functional impact of semimature DC is limited to CD4+ T cell proliferation and cytokine production. Little is known about the molecular basis underpinning the functional effects of Treg-treated DC (Treg-DC). We present novel evidence that Treg-DC skewed CD4+ naive T cell polarization toward a regulatory phenotype and impaired CD8+ T cell allo-reactive responses, including their ability to induce target tissue damage in a unique in vitro human graft-versus-host disease skin explant model. Microarray analysis clustered Treg-DC as a discrete population from mature-DC and immature-DC, with 51 and 93 genes that were significantly over- or underexpressed, respectively, compared with mature-DC. Quantitative real-time PCR analysis revealed an intermediate expression level of CD38, CD83, CD80 and CD86 mRNA in Treg-DC, lower than mature-DC, higher than immature-DC. We also observed an attenuation of NF-κB pathway, an upstream regulator of the aforementioned genes, concomitant with reduced expression of two NF-κB-signaling related genes RELB and NFκBIZ, in the Treg-DC, together with an increased expression of Wnt5a, a negative regulator of DC differentiation. We further confirmed that the Treg-DC-mediated skewed CD4+ naive T cell polarization resulted from decreased IL-12 secretion by Treg-DC, which may be post-transcriptionally modulated by decreased expression of microRNA-155 in Treg-DC. To our knowledge, this is the first study demonstrating a transcriptional modulation of DC function by human Treg, partially via attenuation of the NF-κB signaling pathway and upregulation of Wnt5a, suggesting Treg may interfere with DC reprogramming during maturation, thereby modulating DC function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。