The internal region of CtIP negatively regulates DNA end resection

CtIP 的内部区域负向调节 DNA 末端切除

阅读:5
作者:Sean Michael Howard, Ilaria Ceppi, Roopesh Anand, Roger Geiger, Petr Cejka

Abstract

DNA double-strand breaks are repaired by end-joining or homologous recombination. A key-committing step of recombination is DNA end resection. In resection, phosphorylated CtIP first promotes the endonuclease of MRE11-RAD50-NBS1 (MRN). Subsequently, CtIP also stimulates the WRN/BLM-DNA2 pathway, coordinating thus both short and long-range resection. The structure of CtIP differs from its orthologues in yeast, as it contains a large internal unstructured region. Here, we conducted a domain analysis of CtIP to define the function of the internal region in DNA end resection. We found that residues 350-600 were entirely dispensable for resection in vitro. A mutant lacking these residues was unexpectedly more efficient than full-length CtIP in DNA end resection and homologous recombination in vivo, and consequently conferred resistance to lesions induced by the topoisomerase poison camptothecin, which require high MRN-CtIP-dependent resection activity for repair. This suggested that the internal CtIP region, further mapped to residues 550-600, may mediate a negative regulatory function to prevent over resection in vivo. The CtIP internal deletion mutant exhibited sensitivity to other DNA-damaging drugs, showing that upregulated resection may be instead toxic under different conditions. These experiments together identify a region within the central CtIP domain that negatively regulates DNA end resection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。