Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease

参与阿尔茨海默病发病机制的细胞因子和细胞因子受体

阅读:5
作者:Tomone Nagae, Kiho Araki, Yuki Shimoda, Lucia I Sue, Thomas G Beach, Yoshihiro Konishi

Abstract

Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。