Stress memory gene FaHSP17.8-CII controls thermotolerance via remodeling PSII and ROS signaling in tall fescue

应激记忆基因 FaHSP17.8-CII 通过重塑高羊茅中的 PSII 和 ROS 信号来控制耐热性

阅读:5
作者:Aoyue Bi, Tao Wang, Guangyang Wang, Liang Zhang, Misganaw Wassie, Maurice Amee, Huawei Xu, Zhengrong Hu, Ao Liu, Jinmin Fu, Liang Chen, Tao Hu

Abstract

High temperature is the most limiting factor in the growth of cool-season turfgrass. To cope with high-temperature stress, grass often adopt a memory response by remembering one past recurring stress and preparing a quicker and more robust reaction to the next stress exposure. However, little is known about how stress memory genes regulate the thermomemory response in cool-season turfgrass. Here, we characterized a transcriptional memory gene, Fa-heat shock protein 17.8 Class II (FaHSP17.8-CII) in a cool-season turfgrass species, tall fescue (Festuca arundinacea Schreb.). The thermomemory of FaHSP17.8-CII continued for more than 4 d and was associated with a high H3K4me3 level in tall fescue under heat stress (HS). Furthermore, heat acclimation or priming (ACC)-induced reactive oxygen species (ROS) accumulation and photosystem II (PSII) electron transport were memorable, and this memory response was controlled by FaHSP17.8-CII. In the fahsp17.8-CII mutant generated using CRISPR/Cas9, ACC+HS did not substantially block the ROS accumulation, the degeneration of chloroplast ultra-structure, and the inhibition of PSII activity compared with HS alone. However, overexpression of FaHSP17.8-CII in tall fescue reduced ROS accumulation and chloroplast ultra-structure damage, and improved chlorophyll content and PSII activity under ACC+HS compared with that HS alone. These findings unveil a FaHSP17.8-CII-PSII-ROS module regulating transcriptional memory to enhance thermotolerance in cool-season turfgrass.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。