Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/AdipoR1 activation in SAMP10 mice

运动通过激活 SAMP10 小鼠的脂联素/AdipoR1 恢复肌肉干细胞动员、再生能力和肌肉代谢改变

阅读:4
作者:Aiko Inoue, Xian Wu Cheng, Zhe Huang, Lina Hu, Ryosuke Kikuchi, Haiying Jiang, Limei Piao, Takeshi Sasaki, Kohji Itakura, Hongxian Wu, Guangxian Zhao, Yanna Lei, Guang Yang, Enbo Zhu, Xiang Li, Kohji Sato, Teruhiko Koike, Masafumi Kuzuya

Background

Exercise train (ET) stimulates muscle response in pathological conditions, including aging. The molecular mechanisms by which exercise improves impaired adiponectin/adiponectin receptor 1 (AdipoR1)-related muscle actions associated with aging are poorly understood. Here we observed that in a senescence-accelerated mouse prone 10 (SAMP10) model, long-term ET modulated muscle-regenerative actions.

Conclusions

These findings suggest that ET can improve aging-related impairments of BM-derived MuSC regenerative capacity and muscle metabolic alterations via an AMPK-dependent mechanism that is mediated by an adiponectin/AdipoR1 axis in SAMP10 mice.

Methods

25-week-old male SAMP10 mice were randomly assigned to the control and the ET (45 min/time, 3/week) groups for 4 months. Mice that were maintained in a sedentary condition served controls.

Results

ET ameliorated aging-related muscle changes in microstructure, mitochondria, and performance. The amounts of proteins or mRNAs for p-AMPKα, p-Akt, p-ERK1/2, p-mTOR, Bcl-XL, p-FoxO3, peroxisome proliferators-activated receptor-γ coactivator, adiponectin receptor1 (adpoR1), and cytochrome c oxidase-IV, and the numbers of CD34+ /integrin-α7+ muscle stem cells (MuSCs) and proliferating cells in the muscles and bone-marrow were enhanced by ET, whereas the levels of p-GSK-3α and gp91phox proteins and apoptotic cells were reduced by ET. The ET also resulted in increased levels of plasma adiponectin and the numbers of bone-marrow (BM)-derived circulating CD34+ /integrin-α7+ MuSCs and their functions. Integrin-α7+ MuSCs of exercised mice had improved changes of those beneficial molecules. These ET-mediated aged muscle benefits were diminished by adiponectin and AdipoR1 blocking as well as AMPK inhibition. Finally, recombinant mouse adiponectin enhanced AMPK and mTOR phosphorylations in BM-derived integrin-α7+ cells. Conclusions: These findings suggest that ET can improve aging-related impairments of BM-derived MuSC regenerative capacity and muscle metabolic alterations via an AMPK-dependent mechanism that is mediated by an adiponectin/AdipoR1 axis in SAMP10 mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。