Axonal generation of amyloid-β from palmitoylated APP in mitochondria-associated endoplasmic reticulum membranes

线粒体相关内质网膜中棕榈酰化 APP 轴突生成淀粉样蛋白-β

阅读:5
作者:Raja Bhattacharyya, Sophia E Black, Madhura S Lotlikar, Rebecca H Fenn, Mehdi Jorfi, Dora M Kovacs, Rudolph E Tanzi

Abstract

Axonal generation of Alzheimer's disease (AD)-associated amyloid-β (Aβ) plays a key role in AD neuropathology, but the cellular mechanisms involved in its release have remained elusive. We previously reported that palmitoylated APP (palAPP) partitions to lipid rafts where it serves as a preferred substrate for β-secretase. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are cholesterol-rich lipid rafts that are upregulated in AD. Here, we show that downregulating MAM assembly by either RNA silencing or pharmacological modulation of the MAM-resident sigma1 receptor (S1R) leads to attenuated β-secretase cleavage of palAPP. Upregulation of MAMs promotes trafficking of palAPP to the cell surface, β-secretase cleavage, and Aβ generation. We develop a microfluidic device and use it to show that MAM levels alter Aβ generation specifically in neuronal processes and axons, but not in cell bodies. These data suggest therapeutic strategies for reducing axonal release of Aβ and attenuating β-amyloid pathology in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。