TRG16, targeted by miR-765, inhibits breast cancer stem cell-like properties via regulating the NF-κB pathway

miR-765 靶向的 TRG16 通过调节 NF-κB 通路抑制乳腺癌干细胞样特性

阅读:5
作者:Feng Chi, Xiaoming Jin, Long Chen, Guijin He, Sijia Han

Abstract

Previous studies reported that cancer stem cells (CSCs) might be responsible for drug resistance and cancer progression. Transformation-Related Gene 16 Protein (TRG16), a pseudokinase, was reported to be a suppressor in some types of cancer and its overexpression impaired hepatocellular carcinoma cell stemness. However, the function of TRG16 in BC remains unclear. We found that TRG16 expression was significantly downregulated in BC tissues compared with adjacent tissues (n = 40; P < 0.001) and BC patients with lower expression of TRG16 had a worse prognosis. Forced expression of TRG16 inhibited BC stem cell-like properties as evidenced by decreased CD44-positive cells (CSC marker), reduced mammosphere quantity, and downregulated Nanog, aldehyde dehydrogenase, octamer-binding transcription factor 4, and SRY-box transcription factor 2 expression (CSC markers). Moreover, TRG16 overexpression inhibited self-renewal and invasion capabilities of BC cells in vitro as well as tumor growth in vivo but increased cisplatin sensitivity. However, TRG16 silencing had the opposite effects. Further mechanistic studies revealed that TRG16 was targeted and negatively regulated by miR-765, a facilitator of BC progression. TRG16 could suppress the activation of the NF-κB pathway in BC cells, which is a positive pathway in BC progression and contributes to the maintenance of cancer cell stemness. In conclusion, the results above demonstrate that TRG16, negatively regulated by miR-765, may inhibit the BC progression by regulating BC stem cell-like properties and this inhibition may be mediated by the NF-κB pathway. Our findings indicate that TRG16 may be a potential therapeutic targetable node for BC. TRG16, negatively regulated by miR-765, may inhibit the BC progression through regulating BC stem cell-like properties and this inhibition may be mediated by the NF-κB pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。