Sesamol protects against liver fibrosis induced in rats by modulating lysophosphatidic acid receptor expression and TGF-β/Smad3 signaling pathway

芝麻酚通过调节溶血磷脂酸受体表达和 TGF-β/Smad3 信号通路预防大鼠肝纤维化

阅读:5
作者:Nesma A Abd Elrazik, Mohamed El-Mesery, Mamdouh M El-Shishtawy

Abstract

The present study aimed to investigate the hepatoprotective effect of sesamol (SML), a nutritional phenolic compound obtained from sesame seeds, in liver fibrosis induced by thioacetamide (TAA) in rats and to explore the underlying mechanisms. Thirty-two male Sprague-Dawley rats were equally divided into four groups: control, TAA, TAA + SML 50 mg/kg, and TAA + SML 100 mg/kg groups. Liver functions and hepatic contents of glutathione (GSH) and malondialdehyde (MDA) were measured colorimetrically. Gene expressions of lysophosphatidic acid receptor (LPAR)-1 and -3, connective tissue growth factor (CTGF), transforming growth factor (TGF)-β1, small mothers against decapentaplegic (Smad)-3 and -7, α-smooth muscle actin (α-SMA), and cytokeratin 19 (CK19) were analyzed by qRT-PCR. Moreover, phosphorylated Smad3 (pSmad3) was quantified by ELISA. Additionally, TGF-β1, α-SMA, CK19, and vascular endothelial growth factor (VEGF) protein concentrations were semi-quantitatively analyzed by immunostaining of liver sections. SML treatment markedly improved liver index and liver functions. Moreover, SML protected against liver fibrosis in a dose-dependent manner as indicated by down-regulation of LPAR1, LPAR3, CTGF, TGF-β1/Smad3, and α-SMA expressions and a decrease in pSmad3 level, as well as an up-regulation of Smad7 expression. In addition, SML suppressed ductular reaction hinted by the decrease in CK19 expression. These results reveal the anti-fibrotic effect of SML against liver fibrosis that might be attributed to down-regulation of LPAR1/3 expressions, inhibition of TGF-β1/Smad3 pathway, and ductular reaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。