Improved GPCR ligands from nanobody tethering

通过纳米抗体束缚改进 GPCR 配体

阅读:8
作者:Ross W Cheloha, Fabian A Fischer, Andrew W Woodham, Eileen Daley, Naomi Suminski, Thomas J Gardella, Hidde L Ploegh

Abstract

Antibodies conjugated to bioactive compounds allow targeted delivery of therapeutics to cell types of choice based on that antibody's specificity. Here we develop a new type of conjugate that consists of a nanobody and a peptidic ligand for a G protein-coupled receptor (GPCR), fused via their C-termini. We address activation of parathyroid hormone receptor-1 (PTHR1) and improve the signaling activity and specificity of otherwise poorly active N-terminal peptide fragments of PTH by conjugating them to nanobodies (VHHs) that recognize PTHR1. These C-to-C conjugates show biological activity superior to that of the parent fragment peptide in vitro. In an exploratory experiment in mice, a VHH-PTH peptide conjugate showed biological activity, whereas the corresponding free peptide did not. The lead conjugate also possesses selectivity for PTHR1 superior to that of PTH(1-34). This design approach, dubbed "conjugation of ligands and antibodies for membrane proteins" (CLAMP), can yield ligands with high potency and specificity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。