The antioxidant role of STAT3 in methylmercury-induced toxicity in mouse hypothalamic neuronal GT1-7 cell line

STAT3 在甲基汞诱导的小鼠下丘脑神经元 GT1-7 细胞系毒性中的抗氧化作用

阅读:10
作者:Beatriz Ferrer, Harshini Suresh, Abel Santamaria, João Batista Rocha, Aaron B Bowman, Michael Aschner

Abstract

Oxidative stress, impairment of antioxidant defenses, and disruption of calcium homeostasis are associated with the toxicity of methylmercury (MeHg). Yet, the relative contribution and interdependence of these effects and other molecular mechanisms that mediate MeHg-induced neurotoxicity remain uncertain. The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates the expression of anti-apoptotic and cell cycle progression genes. In addition to its role in cell growth and survival, STAT3 regulates redox homeostasis and prevents oxidative stress by the modulation of nuclear genes that encode for electron transport complexes (ETC) and antioxidant enzymes. Here we tested the hypothesis that STAT3 contributes to the orchestration of the antioxidant defense response against MeHg injury. We show that MeHg (>1 μM) exposure induced STAT3 activation within 1 h and beyond in mouse hypothalamic neuronal GT1-7 cells in a concentration-and time-dependent manner. Pharmacological inhibition of STAT3 phosphorylation exacerbated MeHg-induced reactive oxygen species (ROS) production and antioxidant responses. Finally, treatment with the antioxidant Trolox demonstrated that MeHg-induced STAT3 activation is mediated, at least in part, by MeHg-induced ROS generation. Combined, our results demonstrated a role for the STAT3 signaling pathway as an early response to MeHg-induced oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。