Abstract
Neuroblastoma is an embryonal tumor of the autonomic nervous system with poor prognosis in children. In present study, we demonstrated the relationship of miRNA-34a-5p in the regulating of the Wnt/β-catenin signaling pathway by targeting SRY-related HMG-box (SOX4)Reverse transcription-quantitative PCR was used to detect the expression levels of miRNA-34a-5p and SoX4. Western blotting was performed to assess the protein expression levels of SoX4, Wnt, MMP9, Bax, and Bcl-2. The proliferation, apoptosis, migration and invasion of neuroblastoma cells were determined using MTT, flow cytometry and Transwell assays.In this study, we sought to investigate the role of miRNA-34a-5p on neuroblastoma and the possible molecular mechanism. We had performed in-vitro and in-vivo experiments to evaluate the effects of miRNA-34a-5p on neuroblastoma cell proliferation and invasion by altering its expression level via cell transfection. On the basis of our study, miRNA-34a-5p showed decreased expression levels in neuroblastoma. Subsequently, we manipulated miRNA-34a-5p expression through cell transfection and observed abnormal expression of β-catenin as well as the downstream targets of the Wnt/β-catenin pathway in neuroblastoma cells. With all these evidences, we determined that miRNA-34a-5p regulated Wnt/β-catenin pathway by targeting SOX4.In conclusion, our study demonstrates that miRNA-34a-5p can inhibit the over-activation of the Wnt/β-catenin signaling pathway via targeting SOX4 and further regulate proliferation, invasion of neuroblastoma cells.
