Targeting of the leukemia microenvironment by c(RGDfV) overcomes the resistance to chemotherapy in acute myeloid leukemia in biomimetic polystyrene scaffolds

利用 c(RGDfV) 靶向白血病微环境,可克服仿生聚苯乙烯支架中急性髓系白血病的化疗耐药性

阅读:1
作者:Zhao-Hua Shen ,Dong-Feng Zeng ,Xiao-Yan Wang ,Ying-Ying Ma ,Xi Zhang ,Pei-Yan Kong

Abstract

The bone marrow microenvironment provides a relative sanctuary from cytotoxic drugs for leukemia cells. The present niche models concentrate on a two-dimensional (2D) co-culture system in vitro, which does not imitate the in vivo environment, while the 3D scaffolds are more reflective of this. Osteopontin (Opn) secreted by bone marrow osteoblasts, may participate in protecting leukemia cells from apoptosis by binding to its receptor αvβ3, which can be expressed on the surface of the leukemia MV4-11 cell line. However, the association between the Opn/αvβ3 axis and leukemia cells is unknown. In the present study, experiments were conducted on 3D polystyrene scaffolds coated with osteoblasts and leukemia cells. The cells were exposed to cyclo(Arg-Gly-Asp-d-Phe-Val) [c(RGDfV)] (35 nmol/ml), which blocks αvβ3, for a period of 24 h. Cytarabine was applied 24 h later. The adhesion, migration and apoptosis rates, and the cell cycle of the leukemia cells were analyzed after incubation for 24 and 48 h. In contrast to the 2D culture system, the stromal cells in the scaffolds secreted significantly more alkaline phosphatase and Opn (P<0.05). c(RGDfV) disrupted the adhesion and migration between the tumor cells and the matrix, induced the leukemia cells to leave the protective microenvironment and increased their sensitivity to cell cycle-dependent agents (P<0.05). In summary, the data certified that the 3D scaffolds are suitable for the growth of cells, and that c(RGDfV) inhibits the adhesion and migration abilities of leukemia cells in the endosteal niche. Therefore, blocking the function of Opn may be beneficial in the treatment of acute myeloid leukemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。