Modeling Non-additive Effects in Neighboring Chemically Identical Fluorophores

模拟相邻化学相同荧光团中的非加性效应

阅读:5
作者:Ayush Saurabh, Stefan Niekamp, Ioannis Sgouralis, Steve Pressé

Abstract

Quantitative fluorescence analysis is often used to derive chemical properties, including stoichiometries, of biomolecular complexes. One fundamental underlying assumption in the analysis of fluorescence data─whether it be the determination of protein complex stoichiometry by super-resolution, or step-counting by photobleaching, or the determination of RNA counts in diffraction-limited spots in RNA fluorescence in situ hybridization (RNA-FISH) experiments─is that fluorophores behave identically and do not interact. However, recent experiments on fluorophore-labeled DNA origami structures such as fluorocubes have shed light on the nature of the interactions between identical fluorophores as these are brought closer together, thereby raising questions on the validity of the modeling assumption that fluorophores do not interact. Here, we analyze photon arrival data under pulsed illumination from fluorocubes where distances between dyes range from 2 to 10 nm. We discuss the implications of non-additivity of brightness on quantitative fluorescence analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。