Nerve Terminal GABAA Receptors Activate Ca2+/Calmodulin-dependent Signaling to Inhibit Voltage-gated Ca2+ Influx and Glutamate Release

神经末梢 GABAA 受体激活 Ca2+/钙调蛋白依赖性信号,抑制电压门控 Ca2+ 内流和谷氨酸释放

阅读:4
作者:Philip Long, Audrey Mercer, Rahima Begum, Gary J Stephens, Talvinder S Sihra, Jasmina N Jovanovic

Abstract

gamma-Aminobutyric acid type A (GABA(A)) receptors, a family of Cl(-)-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for gamma-aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated by GABA(A) receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABA(A) receptor activation correlated with an increase in basal intraterminal [Ca(2+)](i). Interestingly, this activation of GABA(A) receptors resulted in a reduction of subsequent depolarization-evoked Ca(2+) influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABA(A) receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca(2+) with Ba(2+), or Ca(2+)/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABA(A) receptors. Application of selective antagonists of voltage-gated Ca(2+) channels (VGCCs) revealed that the GABA(A) receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABA(A) receptors and L- or R-type VGCCs is mediated by Ca(2+)/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。