Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway

二甲基草酰甘氨酸通过 Notch 信号通路促进去分化脂肪细胞向早期心脏分化

阅读:6
作者:Fuhai Li, Zongzhuang Li, Zhi Jiang, Ye Tian, Zhi Wang, Wei Yi, Chenyun Zhang

Background

Hypoxia has been reported to possess the ability to induce mature lipid-filled adipocytes to differentiate into fibroblast-like multipotent dedifferentiated fat (DFAT) cells and stem cells such as iPSCs (interstitial pluripotent stem cells) and ESCs (embryonic stem cells) and then to differentiate into cardiomyocytes. However, the effect of hypoxia on cardiac differentiation of DFAT cells and its underlying molecular mechanism remains to be investigated.

Conclusion

Hypoxia enhanced early cardiac differentiation of DFAT cells through HIF-1α and Notch signaling pathway.

Methods

DFAT cells were prepared from 4 to 6 week-age mice and cultured under hypoxic conditions by adding Prolyl hydroxylase inhibitor and dimethyloxalylglycine (DMOG) into the culture media. To inhibit or block Notch signaling, γ-secretase inhibitor-II (GSI-II) and Notch1 siRNA (si-Notch1) were used. DFAT cell viability was detected using MTT assay. qRT-PCR, immunofluorescence microscopy and western blotting were used to evaluate the cardiac differentiation of DFAT cells and co-immunoprecipitation was used to study the interaction between HIF-1α and Notch signaling.

Objective

To investigate the role of hypoxia in early cardiac differentiation of DFAT cells and the underlying molecular mechanism.

Results

0.6-mM DMOG failed to affect the viability of DFAT cells, but stimulated the cells to express early cardiac transcription factors including Islet1, Nkx2.5 and Gata4 in a time-dependent manner and increase the number of cTnT+ cardiomyocytes (detected at the 28th day after stimulation). It was also demonstrated that DMOG was involved in HIF-1α and Notch signaling as well as HIF-1α-NICD complex formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。