A Quick Method for the Determination of the Fraction of Freebase Nicotine in Electronic Cigarettes

电子香烟中游离碱尼古丁含量的快速测定方法

阅读:5
作者:Amira Yassine, Cynthia Antossian, Rachel El-Hage, Najat A Saliba

Abstract

Recently, many electronic cigarettes (ECIGs) manufacturers have begun offering e-liquids, known as "nicotine salts". These salts that have started gaining big popularity among users can be formed by adding weak acid to e-liquid mixtures consisting of propylene glycol (PG), vegetable glycerin (VG), flavors, and nicotine. The latter can exist in two forms: monoprotonated (mp) and freebase (fb) based on the pH of the matrix. Over the years, the determination of the fraction of fb was found important to policymakers as the prevalence of this form in ECIGs has been associated with the harshness sensory of inhalable aerosols. Liquid-liquid extraction (LLE), 1H NMR, and Henderson-Hasselback have been developed to deduce the fraction of fb; however, these methods were found to be time-consuming and have shown some challenges mainly due to the presence of a non-aqueous matrix consisting of PG and VG. This paper presents a quick non-aqueous pH measurement-based method that allows a quick determination of the fraction fb by just measuring the pH and the dielectric constant of the e-liquid. Then, by inputting these values into an established mathematical relationship, the fraction fb can be deduced. The relationship between pH, dielectric constant, and fb relies on knowing the values of the acidity dissociation constants of nicotine, which were determined for the first time in various PG/VG mixtures using a non-aqueous potentiometric titration. To validate the proposed method, the fraction fb was determined for commercials and lab-made nicotine salts utilizing the pH and LLE methods. The variation between the two methods was (<8.0%) for commercial e-liquids and lab-made nicotine salts containing lactic acid and salicylic acid. A larger discrepancy of up to 22% was observed for lab-made nicotine salts containing benzoic acid, which can be attributed to the stronger affinity of benzoic acid to toluene in the LLE method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。