Optogenetically-induced multimerization of the dopamine transporter increases uptake and trafficking to the plasma membrane

光遗传学诱导的多巴胺转运体多聚化增加其对质膜的吸收和运输

阅读:6
作者:Shalonda M Ingram, Tanu Rana, Ashley M Manson, Faisal M Yayah, Evan G B Jackson, Christopher Anderson, Benem-Orom Davids, J Shawn Goodwin

Abstract

The dopamine transporter (DAT) is essential for the reuptake of the released neurotransmitter dopamine (DA) in the brain. Psychostimulants, methamphetamine and cocaine, have been reported to induce the formation of DAT multimeric complexes in vivo and in vitro. The interpretation of DAT multimer function has been primarily in the context of compounds that induce structural and functional modifications of the DAT, complicating the understanding of the significance of DAT multimers. To examine multimerization in the absence of DAT ligands as well as in their presence, we developed a novel, optogenetic fusion chimera of cryptochrome 2 and DAT with an mCherry fluorescent reporter (Cry2-DAT). Using blue light to induce Cry2-DAT multimeric protein complex formation, we were able to simultaneously test the functional contributions of DAT multimerization in the absence or presence of substrates or inhibitors with high spatiotemporal precision. We found that blue light-stimulated Cry2-DAT multimers significantly increased IDT307 uptake and MFZ 9-18 binding in the absence of ligands as well as after methamphetamine and nomifensine treatment. Blue light-induced Cry2-DAT multimerization increased colocalization with recycling endosomal marker Rab11 and had decreased presence in Rab5-positive early endosomes and Rab7-positive late endosomes. Our data suggest that the increased uptake and binding results from induced and rapid trafficking of DAT multimers to the plasma membrane. Our data suggest that DAT multimers may function to help maintain DA homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。