Whole-genome sequencing reveals complex mechanisms of intrinsic resistance to BRAF inhibition

全基因组测序揭示了对 BRAF 抑制的内在抗性的复杂机制

阅读:4
作者:S Turajlic, S J Furney, G Stamp, S Rana, G Ricken, Y Oduko, G Saturno, C Springer, A Hayes, M Gore, J Larkin, R Marais

Background

BRAF is mutated in ∼42% of human melanomas (COSMIC. http://www.sanger.ac.uk/genetics/CGP/cosmic/) and pharmacological BRAF inhibitors such as vemurafenib and dabrafenib achieve dramatic responses in patients whose tumours harbour BRAF(V600) mutations.

Conclusions

Our analyses show that the five metastases arose from a common progenitor and acquired additional alterations after disease dissemination. We demonstrate that a distinct combination of mutations mediated primary resistance to BRAF inhibition in this patient. These mutations were present in all five tumours and in a tumour sample taken before BRAF inhibitor treatment was administered. Inhibition of both pathways was required to block tumour cell growth, suggesting that combined targeting of these pathways could have been a valid therapeutic approach for this patient.

Methods

We carried out whole-genome sequencing and single nucleotide polymorphism (SNP) array analysis of five metastatic tumours from the patient. We validated mechanisms of resistance in a cell line derived from the patient's tumour.

Results

We observed that the majority of the single-nucleotide variants identified were shared across all tumour sites, but also saw site-specific copy-number alterations in discrete cell populations at different sites. We found that two ubiquitous mutations mediated resistance to BRAF inhibition in these tumours. A mutation in GNAQ sustained mitogen-activated protein kinase (MAPK) signalling, whereas a mutation in PTEN activated the PI3 K/AKT pathway. Inhibition of both pathways synergised to block the growth of the cells. Conclusions: Our analyses show that the five metastases arose from a common progenitor and acquired additional alterations after disease dissemination. We demonstrate that a distinct combination of mutations mediated primary resistance to BRAF inhibition in this patient. These mutations were present in all five tumours and in a tumour sample taken before BRAF inhibitor treatment was administered. Inhibition of both pathways was required to block tumour cell growth, suggesting that combined targeting of these pathways could have been a valid therapeutic approach for this patient.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。