Biochemical characterization of the PHARC-associated serine hydrolase ABHD12 reveals its preference for very-long-chain lipids

PHARC 相关丝氨酸水解酶 ABHD12 的生化表征揭示了其对极长链脂质的偏好

阅读:4
作者:Alaumy Joshi, Minhaj Shaikh, Shubham Singh, Abinaya Rajendran, Amol Mhetre, Siddhesh S Kamat

Abstract

Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a rare genetic human neurological disorder caused by null mutations to the Abhd12 gene, which encodes the integral membrane serine hydrolase enzyme ABHD12. Although the role that ABHD12 plays in PHARC is understood, the thorough biochemical characterization of ABHD12 is lacking. Here, we report the facile synthesis of mono-1-(fatty)acyl-glycerol lipids of varying chain lengths and unsaturation and use this lipid substrate library to biochemically characterize recombinant mammalian ABHD12. The substrate profiling study for ABHD12 suggested that this enzyme requires glycosylation for optimal activity and that it has a strong preference for very-long-chain lipid substrates. We further validated this substrate profile against brain membrane lysates generated from WT and ABHD12 knockout mice. Finally, using cellular organelle fractionation and immunofluorescence assays, we show that mammalian ABHD12 is enriched on the endoplasmic reticulum membrane, where most of the very-long-chain fatty acids are biosynthesized in cells. Taken together, our findings provide a biochemical explanation for why very-long-chain lipids (such as lysophosphatidylserine lipids) accumulate in the brains of ABHD12 knockout mice, which is a murine model of PHARC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。