Discovery of novel Glutaminase allosteric inhibitors through drug repurposing and comparative MMGB/PBSA and molecular dynamics simulation

通过药物再利用和比较 MMGB/PBSA 和分子动力学模拟发现新型谷氨酰胺酶变构抑制剂

阅读:7
作者:Rimsha Yousaf, Afifa Navid, Syed Sikander Azam

Abstract

GLS1 enzymes (Glutaminase C (GAC) and kidney-type Glutaminase (KGA)) are gaining prominence as a target for tumor treatment including lung, breast, kidney, prostate, and colorectal. To date, several medicinal chemistry studies are being conducted to develop new and effective inhibitors against GLS1 enzymes. Telaglenastat, a drug that targets the allosteric site of GLS1, has undergone clinical trials for the first time for the therapy of solid tumors and hematological malignancies. A comprehensive computational investigation is performed to get insights into the inhibition mechanism of the Telaglenastat. Some novel inhibitors are also proposed against GLS1 enzymes using the drug repurposing approach using 2D-fingerprinting virtual screening method against 2.4 million compounds, application of pharmacokinetics, Molecular Docking, and Molecular Dynamic (MD) Simulations. A TIP3P water box of 10 Å was defined to solvate both enzymes to improve MD simulation reliability. The dynamics results were validated further by the MMGB/PBSA binding free energy method, RDF, and AFD analysis. Results of these computational analysis revealed a stable binding affinity of Telaglenastat, as well as an FDA approved drug Astemizole (IC50 ∼ 0.9 nM) and a novel para position oriented methoxy group containing Chembridge compound (Chem-64284604) that provides an effective inhibitory action against GAC and KGA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。