MicroRNA-100 Enhances Autophagy and Suppresses Migration and Invasion of Renal Cell Carcinoma Cells via Disruption of NOX4-Dependent mTOR Pathway

MicroRNA-100 通过破坏 NOX4 依赖性 mTOR 通路增强自噬并抑制肾细胞癌细胞的迁移和侵袭

阅读:8
作者:Xiumin Liu, Lili Zhong, Ping Li, Peng Zhao

Abstract

Renal cell carcinoma (RCC) is the most common kidney malignancy and has a poor prognosis owing to its resistance to chemotherapy. Recently, microRNAs (miRNAs or miRs) have been shown to have a role in cancer metastasis and potential as prognostic biomarkers in cancer. In the present study, we aim to explore the potential role of miR-100 in RCC by targeting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) through the mammalian target of rapamycin (mTOR) pathway. Initially, microarray-based gene expression profiling of RCC was used to identify differentially expressed genes. Next, the expression of miR-100 and NOX4 was examined in RCC tissues and cell lines. Then, the interaction between miR-100 and NOX4 was identified using bioinformatics analysis and dual-luciferase reporter assay. Gain-of-function or loss-of-function approaches were adopted to manipulate miR-100 and NOX4 in order to explore the functional roles in RCC. The results revealed the presence of an upregulated NOX4 and a downregulated miR-100 in both RCC tissues and cell lines. NOX4 was verified as a target of miR-100 in cells. In addition, overexpression of miR-100 or NOX4 silencing could increase autophagy while decreasing the expression of mTOR pathway-related genes and migration and invasion. Conjointly, upregulated miR-100 can potentially increase the autophagy and inhibit the invasion and migration of RCC cells by targeting NOX4 and inactivating the mTOR pathway, which contributes to an extensive understanding of RCC and may provide novel therapeutic options for this disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。